Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:107-95-9 (beta-alanine)
2,037 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

GC-MS-based metabolite profiling was used to analyse the response of Medicago truncatula cell cultures to elicitation with methyl jasmonate (MeJa), yeast elicitor (YE), or ultraviolet light (UV). Marked changes in the levels of primary metabolites, including several amino acids, organic acids, and carbohydrates, were observed following elicitation with MeJa. A similar, but attenuated response was observed following YE elicitation, whereas little response was observed following UV elicitation. MeJa induced the accumulation of the triterpene beta-amyrin, a precursor to the triterpene saponins, and LC-MS analysis confirmed the accumulation of triterpene saponins in MeJa-elicited samples. In addition, YE induced a slight, but significant accumulation of shikimic acid, an early precursor to the phenylpropanoid pathway, which was also demonstrated to be YE-inducible by LC-MS analyses. Correlation analyses of metabolite relationships revealed perturbation of the glycine, serine, and threonine biosynthetic pathway, and suggested the induction of threonine aldolase activity, an enzyme as yet uncharacterized from plants. Members of the branched chain amino acid pathway accumulated in a concerted fashion, with the strongest correlation being that between leucine and isoleucine (r2=0.941). While UV exposure itself had little effect on primary metabolites, the experimental procedure, as revealed by control treatments, induced changes in several metabolites which were similar to those following MeJa elicitation. Sucrose levels were lower in MJ- and YE-elicited samples compared with control samples, suggesting that a portion of the effects observed on the primary metabolic pool are a consequence of fundamental metabolic repartitioning of carbon resources rather than elicitor-specific induction. In addition, beta-alanine levels were elevated in all elicited samples, which, when viewed in the context of other elicitation responses, suggests the altered metabolism of coenzyme A and its esters, which are essential in secondary metabolism.
...
PMID:Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. 1559 76

Plasmepsin group of enzymes are key enzymes in the life cycle of malarial parasites. As inhibition of plasmepsins leads to the parasite's death, these enzymes can be utilized as potential drug targets. Although many drugs are available, it has been observed that Plasmodium falciparum, the species that causes most of the malarial infections and subsequent death, has developed resistance against most of the drugs. Based on the cleavage sites of hemglobin, the substrate for plasmepsins, we have designed two compounds (p-nitrobenzoyl-leucine-beta-alanine and p-nitrobenzoyl-leucine-isonipecotic acid), synthesized them, solved their crystal structures and studied their inhibitory effect using experimental and theoretical (docking) methods. In this paper, we discuss the synthesis, crystal structures and inhibitory nature of these two compounds which have a potential to inhibit plasmepsins.
...
PMID:Plasmepsin inhibitors: design, synthesis, inhibitory studies and crystal structure analysis. 1613 59

Corpora allata from adult female Manduca sexta biosynthesize the sesquiterpenoid juvenile hormone (JH) III and the unusual ethyl-branched homologue JH II in vitro. We maintained corpora allata in medium 199 using [methyl-(3)H]methionine as the source of the JH methyl ester moiety and as a mass marker. This allowed measurement of the relative contributions of (14)C-labeled precursors to the biogenesis of JH II and III carbon skeletons. We showed efficient incorporation of a propionate equivalent, from isoleucine or valine catabolism, into the ethyl-branched portion of JH II, using double-label liquid scintillation counting of isolated JHs and gas chromatography/mass spectrometry with selected ion monitoring of JH deuteromethoxyhydrin derivatives. Methionine was a poor source of propionate for JH II biosynthesis, while glucose, succinate, threonine, and beta-alanine did not contribute propionate at all. Leucine, isoleucine, and glucose incorporated into JH III and the acetate-derived portion of JH II.
...
PMID:Sources of propionate for the biogenesis of ethyl-branched insect juvenile hormones: Role of isoleucine and valine. 1659 91

Incubation of embryoless barley (Hordeum vulgare) half-seeds for 24 hours with 0.1 m glutamate or aspartate resulted in the release of 17 to 48% as much alpha-amylase as did incubation with 260 mmum gibberellin. With incubation periods of 48 to 51 hours these amino acids were on the average about half as active as response-saturating concentrations of gibberellin, and in some experiments they were essentially as active. Citric acid cycle intermediates, glycolytic pathway intermediates, and cofactors of these pathways failed to induce alpha-amylase synthesis, while the following compounds were active: asparagine, homoserine, diaminopimelate, isoleucine, methionine, glutamine, ornithine, citrulline, argininosuccinate, and delta-aminolevulinate. However, threonine, lysine, beta-alanine, alanine, gamma-aminobutyrate, alpha-ketobutyrate, proline, arginine, glycine, leucine, and putrescine were inactive. Two patterns were noted in the list of active and inactive compounds: (a) all of the active compounds contain an amino group and are biosynthetically derived from citric acid cycle intermediates; and (b) biosynthetic precursors of the amino acids arginine, proline, threonine, and lysine were active whereas these amino acids were not.
...
PMID:Induction of alpha-amylase in barley endosperm by substrate levels of glutamate and aspartate. 1665 58

When cowpea (Vigna unguiculata) cells maintained at 26 degrees C are transferred to 42 degrees C, rapid accumulation of gamma-aminobutyrate (>10-fold) is induced. Several other amino acids (including beta-alanine, alanine, and proline) are also accumulated, but less extensively than gamma-aminobutyrate. Total free amino acid levels are increased approximately 1.5-fold after 24 hours at 42 degrees C. Heat shock also leads to release of amino acids into the medium, indicating heat shock damage to the integrity of the plasmalemma. Some of the changes in metabolic rates associated with heat shock were estimated by monitoring the (15)N labeling kinetics of free intracellular, extracellular and protein-bound amino acids of cultures supplied with (15)NH(4) (+), and analyzing the labeling data by computer simulation. Preliminary computer simulation models of nitrogen flux suggest that heat shock induces an increase in the gamma-aminobutyrate synthesis rate from 12.5 nanomoles per hour per gram fresh weight in control cells maintained at 26 degrees C, to as high as 800 nanomoles per hour per gram fresh weight within the first 2 hours of heat shock. This 64-fold increase in the gamma-aminobutyrate synthesis rate greatly exceeds the expected (Q(10)) change of metabolic rate of 2.5- to 3-fold due to a 16 degrees C increase in temperature. We suggest that this metabolic response may in part involve an activation of glutamate decarboxylase in vivo, perhaps mediated by a transient cytoplasmic acidification. Proline appears to be synthesized from glutamate and not from ornithine in cowpea cells. Proline became severalfold more heavily labeled than ornithine, citrulline and arginine in both control and heat-shocked cultures. Proline synthesis rate was increased 2.7-fold by heat shock. Alanine, beta-alanine, valine, leucine, and isoleucine synthesis rates were increased 1.6-, 3.5-, 2.0-, 5.0-, and 6.0-fold, respectively, by heat shock. In contrast, the phenylalanine synthesis rate was decreased by 50% in response to heat shock. The differential effects of heat stress on metabolic rates lead to flux and pool size redistributions throughout the entire network of amino acid metabolism.
...
PMID:Effects of heat shock on amino Acid metabolism of cowpea cells. 1666 81

Flesh flies can enhance their cold hardiness by entering a photoperiod-induced pupal diapause or by a temperature-induced rapid cold-hardening process. To determine whether the same or different metabolites are involved in these two responses, derivatized polar extracts from flesh flies subjected to these treatments were examined using gas chromatography-mass spectrophotometry (GC-MS). This metabolomic approach demonstrated that levels of metabolites involved in glycolysis (glycerol, glucose, alanine, pyruvate) were elevated by both treatments. Metabolites elevated uniquely in response to rapid cold-hardening include glutamine, cystathionine, sorbitol, and urea while levels of beta-alanine, ornithine, trehalose, and mannose levels were reduced. Rapid cold-hardening also uniquely perturbed the urea cycle. In addition to the elevated metabolites shared with rapid cold-hardening, leucine concentrations were uniquely elevated during diapause while levels of a number of other amino acids were reduced. Pools of two aerobic metabolic intermediates, fumarate and citrate, were reduced during diapause, indicating a reduction of Krebs cycle activity. Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts. We discuss the possible contribution of each altered metabolite in enhancing the overall cold hardiness of the organism, as well as the efficacy of GC-MS metabolomics for investigating insect physiological systems.
...
PMID:Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. 1757 67

Ketorolac (KC) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of KC were synthesized by amidation with ethyl esters of amino acids, namely, glycine, l-phenylalanine, l-tryptophan, l-valine, l-isoleucine, l-alanine, l-leucine, l-glutamic acid, l-aspartic acid and beta-alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for biopharmaceutical studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, anti-inflammatory activities were obtained in all cases as compared to KC. Among synthesized prodrugs, viz. AR-11, AR-19 and AR-20 showed excellent pharmacological response and encouraging hydrolysis rate both in SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent showed enhanced partition coefficient but diminished dissolution and hydrolysis rates. Such prodrugs can be considered for sustained release purpose.
...
PMID:Synthesis, characterization and pharmacological evaluation of amide prodrugs of ketorolac. 1796 97

The beta-alanine carrier was characterized functionally in the 1960s to 1980s at the luminal surface of the ileal mucosal wall and is a Na(+)- and Cl(-)-dependent transporter of a number of essential and non-essential cationic and dipolar amino acids including lysine, arginine and leucine. beta-Alanine carrier-like function has not been demonstrated by any solute carrier transport system identified at the molecular level. A series of experiments were designed to determine whether solute carrier SLC6A14 is the molecular correlate of the intestinal beta-alanine carrier, perhaps the last of the classical intestinal amino acid transport systems to be identified at the molecular level. Following expression of the human SLC6A14 transporter in Xenopus laevis oocytes, the key functional characteristics of the beta-alanine carrier, identified previously in situ in ileum, were demonstrated for the first time. The transport system is both Na(+) and Cl(-) dependent, can transport non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine. N-methylation of its substrates reduces the affinity for transport. These observations confirm the hypothesis that the SLC6A14 gene encodes the transport protein known as the beta-alanine carrier which, due to its broad substrate specificity, is likely to play an important role in absorption of essential nutrients and drugs in the distal regions of the human gastrointestinal tract.
...
PMID:Human solute carrier SLC6A14 is the beta-alanine carrier. 1859 38

A complete thermodynamic study of the protonation and Cu(II) complex formation equilibria of a series of alpha- and beta-aminohydroxamic acids in aqueous solution was performed. The thermodynamic parameters obtained for the protonation of glycine-, (S)-alpha-alanine-, (R,S)-valine-, (S)-leucine-, beta-alanine- and (R)-aspartic-beta-hydroxamic acids were compared with those previously reported for gamma-amino- and (S)-glutamic-gamma-hydroxamic acids. The enthalpy/entropy parameters calculated for the protonation microequilibria of these three types of ligands are in very good agreement with the literature values for simple amines and hydroxamic acids. The pentanuclear complexes [Cu5L4H(-4)]2+ contain the ligands acting as (NH2,N-)-(O,O-) bridging bis-chelating and correspond to 12-metallacrown-4 (12-MC-4) which are formed by self-assembly between pH 4 and 6 with alpha-aminohydroxamates (HL), while those with beta- and gamma-derivatives exist in a wider pH range (4-11). The stability order of these metallomacrocycles is beta- >> alpha- > gamma-aminohydroxamates. The formation of 12-MC-4 with alpha-aminohydroxamates is entropy-driven, and that with beta-derivatives is enthalpy-driven, while with gamma-GABAhydroxamate both effects occur. These results are interpreted on the basis of specific enthalpies or entropy contributions related to chelate ring dimensions, charge neutralization and solvation-desolvation effects. The enthalpy/entropy parameters of 12-MC-4 with alpha-aminohydroxamic acids considered are also dependent on the optical purity of the ligands. Actually, that with (R,S)-valinehydroxamic acid presents an higher entropy and a lower enthalpy value than those of enantiopure ligands, although the corresponding stabilities are almost equivalent. Moreover, DFT calculations are in agreement with a more exothermic enthalpy found for metallacrowns with enantiomerically pure ligands.
...
PMID:Copper(II) 12-metallacrown-4 complexes of alpha-, beta- and gamma-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution. 1868

Ion-exchange chromatography with ninhydrin detection remains the gold standard for detecting inborn errors of amino acid catabolism and transport. Disadvantages of such analysis include long chromatography times and interference from other ninhydrin-positive compounds. The aim of this project was to develop a more rapid and specific technique using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Optimal fragmentation patterns for 32 amino acids were determined on a triple quadrupole mass spectrometer following butylation. Chromatographic characteristics of each of the amino acids were determined using C8 reversed-phase chromatography with 20% acetonitrile/0.1% formic acid as isocratic mobile phase. Quantitation using eleven deuterated internal standards was compared to cation exchange and ninhydrin detection on a Beckman 7300 system. Following methanol extraction and butylation, determination of 32 amino acids required 20 min. The dynamic range of each amino acid was generally 1-1000 micromol/L. Imprecision ranged from 7 to 23% (CV) over 6 months and recovery ranged from 88-125%. Deming regression with the Beckman 7300 yielded slopes from 0.4-1.2, intercepts from -21 to 65 micromol/L, correlation coefficients from 0.84-0.99 and Syx from 2-125 micromol/L. Isobaric amino acids were separated by chromatography (e.g. leucine, isoleucine) or by unique fragmentation (e.g., alanine, beta-alanine). LC/MS/MS is comparable to traditional LC-ninhydrin detection. Mass spectral detection shortens analysis times and reduces potential for interference in detecting inborn metabolic errors.
...
PMID:Rapid comprehensive amino acid analysis by liquid chromatography/tandem mass spectrometry: comparison to cation exchange with post-column ninhydrin detection. 1885 96


<< Previous 1 2 3 4 5 6 7 8 9 Next >>